Apparent caspase independence of programmed cell death in Dictyostelium

نویسندگان

  • R. A. Olie
  • F. Durrieu
  • S. Cornillon
  • G. Loughran
  • J. Gross
  • W. C. Earnshaw
  • P. Golstein
چکیده

During normal development, cell elimination [1,2] occurs by programmed cell death (PCD) [3], of which apoptosis [4] is the best known morphological type. Activation of cysteine proteases termed caspases [5] is required in many instances of animal PCD [6-9], but its role outside the animal kingdom is as yet unknown. PCD occurs during developmental stages in the slime mold Dictyostelium discoideum [10,11]. Under favorable conditions, Dictyostelium multiplies as a unicellular organism. Upon starvation, a pathway involving aggregation, differentiation and morphogenesis induces the formation of a multicellular fungus-like structure called a sorocarp [12], consisting mainly of spores and stalk cells, the latter being a result of cell death. Dictyostelium cell death is similar to classical apoptosis in that some cytoplasmic and chromatin condensation occurs but differs from apoptosis because it involves massive vacuolisation and, interestingly, lacks DNA fragmentation [11]. We examined whether caspase activity is required for Dictyostelium cell death. We found that caspase inhibitors did not affect cell death, although some caspase inhibitors that did not inhibit cell death impaired other stages in development and could block affinity-labelling of soluble extracts of Dictyostelium cells with an activated caspase-specific reagent. The simplest interpretation of these results is that in Dictyostelium, whether or not caspase-like molecules exist and are required for some developmental steps, caspase activation is not required for cell death itself.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Duration and Severity of Persistent Pain on Programmed Cell Death

Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...

متن کامل

The Role of Caspase 9 during Programmed Cell Death in Ciliary Ganglia of Chick Embryos

During programmed cell death (PCD) apoptosis is controlled by many factors such as proteases. With no specific protease (s) known during PCD in the developing nervous system so far, we sought to determine if any specific protease (s) is involved in this process and therefore used different protease inhibitors during PCD (from embryonic day 6 to 10) in chick embryos. Among the inhibitors commerc...

متن کامل

Impact of Duration and Severity of Persistent Pain on Programmed Cell Death

Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...

متن کامل

Dictyostelium discoideum: A Model System to Study Autophagy Mediated Life Extension

Autophagy is a major catabolic process in eukaryotes that help degrade and recycle macromolecules and organelles. Recent evidences suggest autophagy to mediate cytoprotection and also help increase longevity. It acts as a central regulatory mechanism for aging/longevity in diverse eukaryotic species. In the present study we have exploited the lower eukaryotic model organism, Dictyostelium disco...

متن کامل

Programmed cell death of developing mammalian neurons after genetic deletion of caspases.

An analysis of programmed cell death of several populations of developing postmitotic neurons after genetic deletion of two key members of the caspase family of pro-apoptotic proteases, caspase-3 and caspase-9, indicates that normal neuronal loss occurs. Although the amount of cell death is not altered, the death process may be delayed, and the cells appear to use a nonapoptotic pathway of dege...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998